Given:
[tex]f(x)=4x^3-5x^2-3x+2[/tex]
[tex]g(x)=x-3[/tex]
To find:
The remainder when f(x) is divided by g(x).
Solution:
According to remainder theorem, if f(x) is divides by (x-c), then remainder is f(c).
Using remainder theorem, if [tex]f(x)=4x^3-5x^2-3x+2[/tex] is divides by [tex]g(x)=x-3[/tex], then remainder is f(3).
Substitute x=3 in f(x).
[tex]f(3)=4(3)^3-5(3)^2-3(3)+2[/tex]
[tex]f(3)=4(27)-5(9)-9+2[/tex]
[tex]f(3)=108-45-7[/tex]
[tex]f(3)=56[/tex]
Therefore, the required remainder is 56.