Answer:
[tex]B' = (7,-6)[/tex]
Step-by-step explanation:
From the attachment, we have that:
[tex]A = (1,8)[/tex]
[tex]B = (-3,4)[/tex]
[tex]C = (4,-2)[/tex]
Required
Determine B'
Taking the translation one at a time:
2 units up
This implies, we add 2 to the y value of the function
[tex]B = (-3,4)[/tex] becomes
[tex]B' = (-3, 4 + 2)[/tex]
[tex]B' = (-3, 6)[/tex]
4 units right
This implies, we subtract 4 to the x value of the function
[tex]B' = (-3, 6)[/tex] becomes
[tex]B' = (-3 - 4,6)[/tex]
[tex]B' = (-7,6)[/tex]
180 degrees rotation
Here; B'(x,y) becomes B'(-x,-y)
So, the initial coordinates [tex]B' = (-7,6)[/tex]
becomes
[tex]B' = (-(-7),-6)[/tex]
[tex]B' = (7,-6)[/tex]
Hence:
The final coordinates of B' is [tex]B' = (7,-6)[/tex]