Respuesta :

Answer:

[tex]B' = (7,-6)[/tex]

Step-by-step explanation:

From the attachment, we have that:

[tex]A = (1,8)[/tex]

[tex]B = (-3,4)[/tex]

[tex]C = (4,-2)[/tex]

Required

Determine B'

Taking the translation one at a time:

2 units up

This implies, we add 2 to the y value of the function

[tex]B = (-3,4)[/tex] becomes

[tex]B' = (-3, 4 + 2)[/tex]

[tex]B' = (-3, 6)[/tex]

4 units right

This implies, we subtract 4 to the x value of the function

[tex]B' = (-3, 6)[/tex] becomes

[tex]B' = (-3 - 4,6)[/tex]

[tex]B' = (-7,6)[/tex]

180 degrees rotation

Here; B'(x,y) becomes B'(-x,-y)

So, the initial coordinates [tex]B' = (-7,6)[/tex]

becomes

[tex]B' = (-(-7),-6)[/tex]

[tex]B' = (7,-6)[/tex]

Hence:

The final coordinates of B' is [tex]B' = (7,-6)[/tex]

RELAXING NOICE
Relax