Answer:
When the ball is on the frictionless side of the track , the angular speed is 89.7 rad/s.
Explanation:
Consider the ball is a solid sphere of radius 3.8 cm and mass 0.14 kg .
Given , mass, m=0.14 kg
Ball is released from rest at a height of, h= 0.83 m
Solid sphere of radius, R = 3.8 cm
=0.038 m
From the conservation of energy
ΔK = ΔU
[tex]\frac{1}{2}mv^2 +\frac{1}{2} I\omega^2=mgh[/tex]
Here , [tex]I=\frac{2}{5} MR^2 , v= R \omega[/tex]
[tex]\frac{1}{2}mv^2\frac{1}{2}(\frac{2}{5}MR^2)(\frac{v}{R^2} )=mgh[/tex]
[tex]\frac{1}{2} [v^2+\frac{2}{5}v^2]= gh[/tex]
[tex]\frac{7}{10} v^2=gh[/tex]
[tex]0.7v^2=gh[/tex]
v=[tex]\sqrt{[gh/(0.7)][/tex]
=[tex]\sqrt{ [(9.8 m/s^2)(0.83 m) / (0.7) ][/tex]
= 3.408 m/s
Hence, angular speed when it is on the frictionless side of the track,
[tex]\omega=\frac{v}{R}[/tex]
= (3.408 m/s)/(0.038 m)
[tex]\omega[/tex] = 89.7 rad/s
Hence , the angular speed is 89.7 rad/s