Answer:
[tex]h(f(x)) =6x-2[/tex]
Step-by-step explanation:
Given
[tex]f(x) = (3x-5)^3\\h(x) = 2\sqrt[3]{x}+8[/tex]
Required
Write [tex]h(f(x))[/tex] in terms of x
[tex]h(f(x)) = h((3x-5)^3)[/tex]
To get [tex]h((3x-5)^3)[/tex], we will replace x in h(x) with (3x-5)³ as shown:
[tex]h((3x-5)^3) = 2\sqrt[3]{(3x-5)^3} +8\\ h((3x-5)^3) = 2(3x-5) + 8\\ h((3x-5)^3) = 6x - 10 + 8\\ h((3x-5)^3) = 6x-2\\Hence \ h(f(x)) =6x-2[/tex]
Hence the expression [tex]h(f(x))[/tex] in terms of x is 6x - 2