Answer:
0.231 rev/s
Explanation:
[tex]m[/tex] = Mass of cylinder
[tex]d[/tex] = Diameter of the cylinder = [tex]13.5\ \text{m}[/tex]
[tex]r[/tex] = Radius = [tex]\dfrac{13.5}{2}=6.75\ \text{m}[/tex]
[tex]\mu[/tex] = Coefficient of static friction = [tex]0.695[/tex]
[tex]N[/tex] = Normal force = [tex]mr\omega^2[/tex]
[tex]g[/tex] = Acceleration due to gravity = [tex]9.81\ \text{m/s}^2[/tex]
The force equation of the system will be
[tex]\mu N=mg\\\Rightarrow \mu\times mr\omega^2=mg\\\Rightarrow \omega=\sqrt{\dfrac{g}{\mu r}}\\\Rightarrow \omega=\sqrt{\dfrac{9.81}{0.695\times 6.75}}\\\Rightarrow \omega=1.45\ \text{rad/s}[/tex]
Converting to rev/s
[tex]\dfrac{1.45}{2\pi}=0.231\ \text{rev/s}[/tex]
The number of revolutions of the cylinder is 0.231 rev/s.