Problem 9-8 (modified). The height of adult males in a particular city is normally distributed, with mean 69.5 in. and standard deviation 2.65 in. When a random sample is taken of size 20, find (1) the standard error of Xbar

Respuesta :

Complete Question

Problem 9-8 (modified). The height of adult males in a particular city is normally distributed, with mean 69.5 in. and standard deviation 2.65 in.

When a random sample is taken of size  20, find (1) the standard error of Xbar

(2) the probability that Xbar falls within .5 in. of the true mean

Probability=

Answer:

1

[tex]\sigma_{\= x} = 0.5926[/tex]

2

[tex]P( 69 < \= X < 70) = 0.60134[/tex]

Step-by-step explanation:

From the question we are told that

  The true  mean is  [tex]\mu = 69.5 \ in[/tex]

  The standard deviation is  [tex]\sigma = 2.65 \ in[/tex]

    The sample size is n =  20

Generally the standard error of Xbar[tex](\= x)[/tex] is mathematically represented as

     [tex]\sigma_{\= x} = \frac{\sigma }{\sqrt{n} }[/tex]

=>  [tex]\sigma_{\= x} = \frac{ 2.65 }{\sqrt{ 20 } }[/tex]

=>  [tex]\sigma_{\= x} = 0.5926[/tex]

Generally for  [tex]\= x[/tex] to fall within 0.5 of the true mean the [tex]\= x[/tex] must be within

     [tex]a = \mu + 0.5[/tex]

=>   [tex]a = 69.5 + 0.5[/tex]

=>   [tex]a = 70[/tex]

or  [tex]b = \mu -0.5[/tex]

=>    [tex]b = 69.5 -0.5[/tex]

=>    [tex]b = 69[/tex]

Generally the probability that  [tex]\= x[/tex] fall with 0.5  of the true mean is mathematically represented as

     [tex]P( 69 < \= X < 70) = P(\frac{69 - 69.5 }{ 0.5926} < \frac{\= X - \mu }{ \sigma_{\= x} } <\frac{70- 69.5 }{ 0.5926})[/tex]

=>  [tex]P( 69 < \= X < 70) = P(-0.844 < Z < 0.844)[/tex]

=>  [tex]P( 69 < \= X < 70) = P( Z < 0.844) - P( < -0.844)[/tex]

From the z table the probability of  (  Z    < 0.844)  and   (  Z    < -0.844)  is  

     [tex]P( Z < 0.844) = 0.80067[/tex]

and

    [tex]P( Z < - 0.844) = 0.19933[/tex]

So

   [tex]P( 69 < \= X < 70) = 0.80067 - 0.19933[/tex]

=>  [tex]P( 69 < \= X < 70) = 0.60134[/tex]

The standard error of the given data comes to be 0.593.

It is given that

mean [tex]\mu[/tex] = 69.5 inch

Standard deviation [tex]\sigma[/tex] = 2.65 inch

Sample size n =20

What is the standard error?

The standard error is a statistical term that measures the accuracy with which a sample distribution represents a population by using standard deviation.

The standard error is given by:

[tex]SE =\frac{\sigma}{\sqrt{n} }[/tex]

[tex]SE =\frac{2.65}{\sqrt{20} }[/tex]

[tex]SE=0.593[/tex]

Hence, the standard error of the given data comes to be 0.593.

To get more about standard errors visit:

https://brainly.com/question/1191244

ACCESS MORE
EDU ACCESS
Universidad de Mexico