Answer:
11.79 years
Explanation:
using the yield to maturity formula we can determine the number of periods until maturity:
YTM = {coupon + [(face value - market value)/n]} / [(face value + market value)/2]
0.0821/2 = {29.5 + [(1,000 - 816.5)/n]} / [(1,000 + 816.5)/2]
0.04105 = {29.5 + [(1,000 - 816.5)/n]} / 908.25
0.04105 x 908.25 = {29.5 + [(183.5)/n]
37.2837 = 29.5 + [(183.5)/n]
7.7837 = 183.5/n
n = 183.5 / 7.7837 = 23.57 / 2 (years) = 11.79 years