Answer:
The value is [tex]P(60 < X < 70) = 0.34134[/tex]
Step-by-step explanation:
From the question we are told that
The mean is [tex]\mu = 1 \ hour = 60 \ minutes[/tex]
The standard deviation is [tex]\sigma = 10 \ minutes[/tex]
Generally the 1 hour is equivalent to 60 minutes
Generally the probability to complete the job in one hour or more, but less than 70 minutes is mathematically represented as
[tex]P(60 < X < 70) = P(\frac{60 - 60 }{10 } < \frac{X - \mu}{\sigma } < \frac{70 - 60 }{10 } )[/tex]
=> [tex]P(60 < X < 70) = P(0 < \frac{X - \mu}{\sigma } < 1 )[/tex]
[tex]\frac{X -\mu}{\sigma } = Z (The \ standardized \ value\ of \ X )[/tex]
=> [tex]P(60 < X < 70) = P(0 <Z < 1 )[/tex]
=> [tex]P(60 < X < 70) = P(Z < 1) - P(Z < 0 )[/tex]
From the z table (Z < 1) and (Z < 0 ) is
[tex]P(Z < 1) = 0.84134[/tex]
and
[tex]P(Z < 0 ) = 0.5[/tex]
=> [tex]P(60 < X < 70) = 0.84134 - 0.5[/tex]
=> [tex]P(60 < X < 70) = 0.34134[/tex]