Answer:
[tex]D_u f(0,\pi/6)=\frac{4\sqrt{3}-3}{5}[/tex]
Step-by-step explanation:
We are given that
[tex]f(x,y)=2cos(y)e^{x}[/tex]
Point=([tex]0,\pi/6[/tex])
Vector v=<-8,6>
We have to find the directional derivative of the function.
[tex]f_x(x,y)=2cos(y)e^{x}[/tex]
[tex]f_x(0,\pi/6)=\sqrt{3}[/tex]
[tex]f_y(x,y)=-2sin(y)e^{x}[/tex]
[tex]f_y(0,\pi/6)=-1[/tex]
[tex]|v|=\sqrt{(-8)^2+6^2}=\sqrt{100}=10[/tex]
[tex]\hat{u}=\frac{v}{|v|}=\frac{-8i+6j}{10}=\frac{1}{10}(-8i+6j)[/tex]
[tex]\nabla f(0,\pi/6)=<f_x(0,\pi/6),f_y(0,\pi/6)>=<\sqrt{3},-1>[/tex]
Now, the directional derivative in the direction of v at point (0,[tex]\pi/6[/tex]) is given by
[tex]D_u f(0,\pi/6)=\nabla f(0,\pi/6)\cdot \hat{u}[/tex]
By using the formula
[tex]D_u f(x,y)=\nabla f(x,y)\cdot \hat{u}[/tex]
[tex]D_u f(0,\pi/6)=<\sqrt{3},-1>\cdot <-\frac{8}{10},\frac{6}{10}>[/tex]
[tex]D_u f(0,\pi/6)=-\frac{4\sqrt{3}}{5}-\frac{3}{5}=-\frac{1}{5}(4\sqrt{3}+3)[/tex]