Find the directional derivative of the function f(x,y)=2cos(y)exf(x,y)=2cos⁡(y)ex at the point (0,π6)(0,π6) in the direction of the vector v=⟨−8,6⟩v=⟨−8,6⟩.

Respuesta :

Answer:

[tex]D_u f(0,\pi/6)=\frac{4\sqrt{3}-3}{5}[/tex]

Step-by-step explanation:

We are given that

[tex]f(x,y)=2cos(y)e^{x}[/tex]

Point=([tex]0,\pi/6[/tex])

Vector v=<-8,6>

We have to find the directional derivative of the function.

[tex]f_x(x,y)=2cos(y)e^{x}[/tex]

[tex]f_x(0,\pi/6)=\sqrt{3}[/tex]

[tex]f_y(x,y)=-2sin(y)e^{x}[/tex]

[tex]f_y(0,\pi/6)=-1[/tex]

[tex]|v|=\sqrt{(-8)^2+6^2}=\sqrt{100}=10[/tex]

[tex]\hat{u}=\frac{v}{|v|}=\frac{-8i+6j}{10}=\frac{1}{10}(-8i+6j)[/tex]

[tex]\nabla f(0,\pi/6)=<f_x(0,\pi/6),f_y(0,\pi/6)>=<\sqrt{3},-1>[/tex]

Now, the directional derivative in the direction of v at point (0,[tex]\pi/6[/tex]) is given by

[tex]D_u f(0,\pi/6)=\nabla f(0,\pi/6)\cdot \hat{u}[/tex]

By using the formula

[tex]D_u f(x,y)=\nabla f(x,y)\cdot \hat{u}[/tex]

[tex]D_u f(0,\pi/6)=<\sqrt{3},-1>\cdot <-\frac{8}{10},\frac{6}{10}>[/tex]

[tex]D_u f(0,\pi/6)=-\frac{4\sqrt{3}}{5}-\frac{3}{5}=-\frac{1}{5}(4\sqrt{3}+3)[/tex]

ACCESS MORE
EDU ACCESS