Respuesta :
Answer:
[tex]\mathbf{y(x) = \dfrac{(c_1 + c_2) \ cos (x)}{e^{6x} }+ \dfrac{i(c_1 -c_2) \ sin (x)}{e^{6x}}+ c_3e^{3\ x}}[/tex]
Step-by-step explanation:
The objective of this question is to solve:
[tex]\dfrac{dy(x)}{dx}+ 9\dfrac{d^2y(dx)}{dx^2}+\dfrac{d^3y(x)}{dx^3}-111y(x) = 0 :[/tex]
Suppose the general solution is proportional to [tex]e^{\lambda x}[/tex] for [tex]\lambda[/tex] is constant; Then:
Let's replace [tex]y(x) = e^{\lambda\ x}[/tex] into the above equation:
i.e.
[tex]\dfrac{d^3}{dx^3}(e ^{\lambda x} )+ 9 \dfrac{d^2}{dx^2}(e ^{\lambda x} ) + \dfrac{d}{dx}(e ^{\lambda x} )- 111 \ e ^{\lambda x} = 0[/tex]
To Replace:
[tex]\dfrac{d^3}{dx^3}(e ^{\lambda x} )[/tex] with [tex]\lambda^3 e ^{\lambda x }[/tex]
[tex]\dfrac{d^2}{dx^2}(e ^{\lambda x} ) \ with \ \lambda^2 e^{\lambda\ x}[/tex]
[tex]\dfrac{d}{dx}(e ^{\lambda x} ) \ with \ \lambda e ^{\lambda \ x}[/tex]
Thus;
[tex]\lambda^3 e ^{\lambda x }[/tex] + [tex]9 \lambda^2 e^{\lambda\ x}[/tex] + [tex]\lambda e ^{\lambda \ x}[/tex] - 111 [tex]e ^{\lambda \ x}[/tex] = 0
[tex]e ^{\lambda \ x} (\lambda ^3 + 9 \lambda ^2 + \lambda - 111 )= 0[/tex]
∴
In as much as [tex]e^{ \lambda x}\neq 0[/tex] for any finite [tex]\lambda[/tex]; Then:
[tex]\lambda ^3 + 9 \lambda ^2 + 111 = 0[/tex]
By Factorization:
[tex](\lambda - 3) ( \lambda ^2 + 12 \lambda + 37) = 0[/tex]
[tex]\lambda = -6 + i \ or\ \lambda = -6 - i \ or \ \lambda = 3[/tex]
However;
The root [tex]\lambda = -6 \pm i[/tex] yield;
[tex]y_1 = (x) = c_1 e ^ {(-6+i)x}[/tex]
[tex]y_2 (x) = c_2e^{(-6-i)x}[/tex]
The root [tex]\lambda = 3[/tex] yield;
[tex]y_3(x) = c_3 e^{3x}[/tex]
∴
The general solution is:
[tex]y(x) = y_1(x) + y_2(x) + y_3(x) = \dfrac{c_1}{c^{(6-i)}x}+\dfrac{c_2}{c^{(6+i)}x}+ c_3e^{3x}[/tex]
Using Euler's Identity ;
[tex]e^{\alpha+i \beta} = e^\alpha \ cos (\beta ) + i \ e^\alpha \ sin ( \beta)[/tex]
[tex]y(x) = c_1 ( \dfrac{cos (x) }{e^{6x}}+ \dfrac{i \ sin x }{e^{6x} }) + c_2 ( \dfrac{cos (x)}{e^{6x}}- \dfrac{-i \ sin (x)}{e^{6x}})+c_3 e^{3x}[/tex]
[tex]\mathbf{y(x) = \dfrac{(c_1 + c_2) \ cos (x)}{e^{6x} }+ \dfrac{i(c_1 -c_2) \ sin (x)}{e^{6x}}+ c_3e^{3\ x}}[/tex]
Otras preguntas
