Respuesta :
Answer:
The moment of inertia of the object is 17.276 kilogram-square meters.
Explanation:
According to the statement, we find that object has rotation and no translation. From Rotation Physics we get that rotational kinetic energy ([tex]K_{R}[/tex]), measured in joules, is represented by the following formula:
[tex]K_{R} = \frac{1}{2}\cdot I_{G}\cdot \omega^{2}[/tex] (Eq. 1)
Where:
[tex]I_{G}[/tex] - Moment of inertia with respect to center of mass, measured in kilogram-square meters.
[tex]\omega[/tex] - Angular speed, measured in radians per second.
Now we clear the moment of inertia:
[tex]I_{G} = \frac{2\cdot K_{R}}{\omega^{2}}[/tex]
If we know that [tex]K_{R} = 16\,J[/tex] and [tex]\omega \approx 1.361\,\frac{rad}{s}[/tex], then the moment of inertia of the object is:
[tex]I_{G} = \frac{2\cdot (16\,J)}{\left(1.361\,\frac{rad}{s} \right)^{2}}[/tex]
[tex]I_{G} =17.276\,kg\cdot m^{2}[/tex]
The moment of inertia of the object is 17.276 kilogram-square meters.
The moment of inertia of the object will be "17.276 kg/m²".
Moment of inertia
Rotational Kinetic energy, [tex]K_R[/tex] = 16 J
Angular speed, ω = 1.361 rad/s
By using the Rotation Physics, the relation will be:
→ [tex]K_R[/tex] = [tex]\frac{1}{2}[/tex] × [tex]I_G[/tex] × ω²
the,
The moment of inertia be:
→ [tex]I_G[/tex] = [tex]\frac{2\times K_R}{\omega^2}[/tex]
By substituting the values, we get
= [tex]\frac{2\times 16}{(1.361)^2}[/tex]
= [tex]\frac{32}{(1.361)^2}[/tex]
= 17.276 kg.m²
Thus the above answer is correct.
Find out more information about Kinetic energy here:
https://brainly.com/question/25803184
Otras preguntas
