Answer:
[tex]f(g(x))=-6x[/tex]
Step-by-step explanation:
Composite Function
Given f(x) and g(x) as real functions, the composite function named [tex](f\circ g)(x)[/tex] is defined as:
[tex](f\circ g)(x)=f(g(x))[/tex]
It can simply be found by substituting g into f.
Our functions are:
[tex]f(x)=2x-4[/tex]
[tex]g(x)=-3x+2[/tex]
Substituting g into f:
[tex]f(g(x))=2(-3x+2)-4[/tex]
Operating:
[tex]f(g(x))=-6x+4-4[/tex]
Simplifying:
[tex]\boxed{f(g(x))=-6x}[/tex]