Respuesta :
Answer:
[tex] \huge \boxed{ \boxed{ \tt x = 2}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
- equation
given:
- [tex](x-1)\sqrt{x^{2}-2x+4 } +(x-3)\sqrt{x^{2}-6x+12 }+2x-4=0 \atop [/tex]
to solve:
- x
let's solve:
- [tex] \sf rewrite \: (x - 1) \sqrt{ {x }^{2} - 2x + 4} \: as \: (x - 2)( \sqrt{ {x}^{2} - 2x + 4 } ) + (x + 1) ( \sqrt{ {x}^{2} - 2x + 4}) : \\ (x-2)\sqrt{x^{2}-2x+4 } +(x + 1)( \sqrt{ {x}^{2} - 2x + 4)} + (x-3)\sqrt{x^{2}-6x+12 }+2x-4=0[/tex]
- [tex] \sf rewrite (x - 3) \sqrt{ {x}^{2} - 6x + 12 } \: as \: (x - 2) \sqrt{ {x}^{2} - 6x + 12} - : \\ (x-2)\sqrt{x^{2}-2x+4 } +(x + 1)\sqrt{ {x}^{2} - 2x + 4} + (x-2)\sqrt{x^{2}-6x+12 } + (x - 1) \sqrt{ {x}^{2} - 6x + 12} +2x-4=0[/tex]
- [tex](x - 2) \{\sqrt{ {x}^{2} - 2x + 4 } + \sqrt{ {x}^{2} - 6x + 12} + \frac{4}{\sqrt{ {x}^{2} - 2x + 4 } + \sqrt{ {x}^{2} - 6x + 12} } + 2 \} = 0[/tex]
- [tex] \sf \: divide \: both \: sides \: by \: \{\sqrt{ {x}^{2} - 2x + 4 } + \sqrt{ {x}^{2} - 6x + 12} + \frac{4}{\sqrt{ {x}^{2} - 2x + 4 } + \sqrt{ {x}^{2} - 6x + 12} } + 2 \} : \\ x - 2 = 0[/tex]
- [tex] \therefore \: x = 2[/tex]
Otras preguntas
