Respuesta :

Answer:

Its A. I took the quiz.

Step-by-step explanation:

Soluions for the given expression in the given interval will be {0, π/2, 3π/2}.

Option A will be the answer.

Solutions of the trigonometric identites:

Given expression in the question,

[tex]\text{sin}^2(\theta)=2\text{sin}^2(\frac{\theta}{2} )[/tex]

[tex][2\text{sin}(\frac{\theta}{2} )\text{cos}(\frac{\theta}{2} )]^2=2\text{sin}^2(\frac{\theta}{2} )[/tex]

[tex]4\text{sin}^2(\frac{\theta}{2} )\text{cos}^2(\frac{\theta}{2} )=2\text{sin}^2(\frac{\theta}{2} )[/tex]

[tex]4\text{sin}^2(\frac{\theta}{2} )\text{cos}^2(\frac{\theta}{2} )-2\text{sin}^2(\frac{\theta}{2} )=0[/tex]

[tex]2\text{sin}^2(\frac{\theta}{2} )[2\text{cos}^2(\frac{\theta}{2} )-1)]=0[/tex]

[tex]\text{sin}\frac{\theta}{2}=0[/tex]

[tex]\frac{\theta}{2} =n\pi[/tex]

[tex]\theta=2n\pi[/tex] [Here, n = integer]

[tex]\theta=0,\pi,2\pi.....[/tex]

Therefore, [tex]\theta=0[/tex] [Since, [tex]0\leq \theta < 2\pi[/tex]]

[tex]2\text{cos}^2(\frac{\theta}{2})-1=0[/tex]

[tex]\text{cos}\theta=0[/tex]

[tex]x=\frac{\pi}{2}+\pi n}[/tex] [Here, n = integer]

Therefore, [tex]\theta=\frac{\pi}{2},\frac{3\pi}{2}[/tex] [Since, [tex]0\leq \theta < 2\pi[/tex]]

    Hence, soluions for the given expression will be {[tex]0,\frac{\pi}{2} ,\frac{3\pi}{2}[/tex]}.

Learn more to get the solutions of the trigonometric expressions here,

https://brainly.com/question/14108526?referrer=searchResults

ACCESS MORE
EDU ACCESS
Universidad de Mexico