Respuesta :
Answer:
The volume of the solid is: [tex]\mathbf{\dfrac{76}{3}}[/tex]
Step-by-step explanation:
Consider the given paraboloid and the planes:
z = 7x² + 4y², x = 0, y = 2, y = x , z = 0
The region of type -II can be expressed as:
D = {(x,y)| 0 ≤ x ≤ y, 0 ≤ y ≤ 2}
Suppose f(x,y) is continous on type-I region D such that:
D = {(x,y) | a ≤ y ≤ b, g₁(y) ≤ x ≤ g₂ (y) }
Then, we can compute the double integral as follows:
[tex]\int \int \limits _D f (x,y) \ dA = \int \limits ^b_a \int \limits ^{g_2(x)}_{g_1 (y)} f (x,y) \ dydx[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{y=0} \int \limits ^{y}_{x=0}(7x^2+4y^2) \ dxdy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{0} (7x^2+4y^2)^y_0 \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{0} (7\dfrac{x^3}{3}+4xy^2)^y_0 \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{0} (7\dfrac{y^3}{3}+4(y)y^2-0) \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{0} (7\dfrac{y^3}{3}+4y^3) \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{0} ( \dfrac{7y^3+ 12y^3}{3} \ ) \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \int \limits ^2_{0} ( \dfrac{ 19y^3}{3} \ ) \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \dfrac{ 19}{3} \int \limits ^2_{0} y^3 \ dy[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \dfrac{ 19}{3} \begin {bmatrix} \dfrac{y^4}{4} \end {bmatrix}^2_0[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \dfrac{ 19}{3} \begin {bmatrix} \dfrac{2^4}{4} -0 \end {bmatrix}[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \dfrac{ 19}{3} \begin {bmatrix} \dfrac{16}{4} -0 \end {bmatrix}[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \dfrac{ 19}{3} \begin {bmatrix} 4\end {bmatrix}[/tex]
[tex]\int \int_D (7x^2 +4y^2) \ dA = \dfrac{ 76}{3}[/tex]
Thus, the volume of the solid is: [tex]\mathbf{\dfrac{76}{3}}[/tex]