Answer:
The correct answer -
1. volume of the plasmid: 2 ml
2. insert needed = 100 mg
Explanation:
Calculating the inserted by the formula:
[tex]\dfrac{insert\ size}{vector\ size}\times\dfrac{moles\ of\ insert}{moles\ of\ vector}=\dfrac{insert}{vector}[/tex]
for a mormal vector size using 50 mg of vector DNA per ligation reaction.
take x as required insert:
[tex]\dfrac{2}{3}\times\dfrac{0.060}{0.020}=\dfrac{x}{50}[/tex]
[tex]\dfrac{2}{3}\times\dfrac{3}{1}=\dfrac{x}{50}[/tex]
[tex]\dfrac{6}{3}=\dfrac{x}{50}[/tex]
3x = 300
[tex]x=\dfrac{300}{3}[/tex]
x = 100 mg
Volume of plasmid vector is :
[tex]\text{volume of plasmid}=\dfrac{\text{amount of vector needed}}{\text{conc. of vector}}=\dfrac{50}{25}[/tex]
volume of plamid vector = 2 ml.