Applying the relationship existing between angle pairs, the measure of each angle in the image are:
m<1 = 42°
m<3 = 75°
m<4 = 42°
m<5 = 63°
m<6 = 75°
m<7 = 105°
m<8 = 75°
m<10 = 75°
m<11 = 42°
m<12 = 138°
m<13 = 42°
m<14 = 138°
Given that a || b, where:
- m<2 = 63°
- m<9 = 105°, the missing angle measures will be determined as follows:
Find m<1:
m<1 + m<2 = m<9 (exterior interior angle theorem)
m<1 + 63° = 105°
m<1 = 105° - 63°
m<1 = 42°
Find m<3:
m<1 + m<2 + m<3 = 180° (angles on a straight line)
42° + 63°+ m<3 = 180°
105° + m<3 = 180°
m<3 = 180° - 105°
m<3 = 75°
Find m<4:
m<4 = m<1 (vertical angles theorem)
m<4 = 42°
Find m<5:
m<5 = m<2 (vertical angles theorem)
m<5 = 63°
Find m<6:
m<6 = m<3 (vertical angles theorem)
m<6 = 75°
Find m<7:
m<7 + m<6 = 180° (corresponding angles theorem)
m<7 + 75° = 180°
m<7 = 180° - 75°
m<7 = 105°
Find m<8:
m<8 = m<6 (alternate interior angles theorem)
m<8 = 75°
Find m<10:
m<10 = m<6 (corresponding angles theorem)
m<10 = 75°
Find m<11:
m<11 = m<4 (alternate interior angles theorem)
m<11 = 42°
Find m<12:
m<12 = m<6 + m<5 (alternate interior angles theorem)
m<12 = 75° + 63°
m<12 = 138°
Find m<13:
m<13 = m<11 (vertical angles theorem)
m<13 = 42°
Find m<13:
m<14 = m<12 (vertical angles theorem)
m<14 = 138°
Learn more here:
https://brainly.com/question/24607467