Answer:
The wavelength of light (in nm) of the spectral line of Hydrogen where an electron falls from the 6th Bohr orbit to the 3rd Bohr orbit is 1090nm
Explanation:
We know that , the wavelength of the light is calculated by Rydberg's formula-
[tex]\frac{1}{\pi} =R^2(\frac{1}{n^2_1} -\frac{1}{n^2_2})[/tex] [tex][n_2>n_1][/tex]
Here , R = Rydberg's constant [tex](1.097\times 10^7 m^-^1)[/tex]
Z = atomic number (for hydrogen , Z= 1)
[tex]n_2 =6 , n_1=3[/tex]
[tex]\pi =[/tex] wavelength of light
Now , putting the values in the Rydberg's formula ,
[tex]\frac{1}{\pi} =1.097\times10^7m^-^1(\frac{1}{3^2} -\frac{1}{6^2} )[/tex]
=[tex]1.097\times 10^7m^-^1 (\frac{4-1}{36} )[/tex]
=[tex]1.097\times 10^7m^-^1(\frac{3}{36} )[/tex]
=[tex]1.097\times 10^7m^-^1(\frac{1}{12} )[/tex]
[tex]\frac{1}{\pi}[/tex] = [tex]0.0914167\times 10^7m^-^1[/tex]
[tex]\pi=\frac{1}{0.0914167\times10^7m^-^1}[/tex]
[tex]\pi=10.9389\times10^-^7\\\pi=1093.89\times10^-^9m[/tex]
=1090nm
Hence , the wavelength of the light is 1090nm,, that is option D is correct.