Respuesta :
Answer:
a
[tex]f(x) = \frac{1}{\mu} e^{- \frac{x}{\mu} } = \frac{1}{26} e^{-\frac{x}{26} } \ for \ \ x\ge 0[/tex] option B
b
[tex]P(15 < X < 30) = 0.2462[/tex]
c
[tex]P(X > 120 ) = 0.0099[/tex]
Step-by-step explanation:
From the question we are told that
The number of stores is n = 2300
The mean is [tex]\mu = 26[/tex]
Generally the probability mass function for exponential distribution is
[tex]f(x) = \left \{ {{ \lambda e^{-\lambda x}, \ \ \ \ \ x \ge 0} \atop {0 } \ \ \ \ \ \ \ \ \ \ \ x < 0. } \right.[/tex]
Here [tex]\lambda[/tex] is the rate which is mathematically represented as
[tex]\lambda = \frac{1}{\mu}[/tex]
=> [tex]\lambda = \frac{1}{26}[/tex]
=> [tex]\lambda = 0.03846[/tex]
Generally the exponential probability distribution is applicable and Show the probability density function of waiting time at Kroger is
[tex]f(x) = \frac{1}{\mu} e^{- \frac{x}{\mu} } = \frac{1}{26} e^{-\frac{x}{26} } \ for \ \ x\ge 0[/tex]
Generally the probability that a customer will have to wait between 15 and 30 seconds is mathematically represented as
[tex]P(15 < X < 30) = \int\limits^{15}_{30} {\frac{1}{26} e^{\frac{x}{26} } } \, dx[/tex]
=> [tex]P(15 < X < 30) =\frac{1}{26}[ { 26 e^{-\frac{x}{26} } } ]|\left \ 15} \atop {30}} \right.[/tex]
=> [tex]P(15 < X < 30) = [ { e^{-\frac{x}{26} } } ]|\left \ 15} \atop {30}} \right.[/tex]
=> [tex]P(15 < X < 30) = [ { e^{-\frac{15}{26} } } - e^{-\frac{30}{26} } } ][/tex]
=> [tex]P(15 < X < 30) = 0.2462[/tex]
Generally 2 minutes = 120 seconds
Generally the probability that a customer will have to wait more than 2 minutes
[tex]P(X > 120 ) = 1- P(X < 120 )[/tex]
Here
[tex]P(X < 120) = \int\limits^{0}_{120} { \frac{1}{26} e^{-\frac{x}{26} } } \, dx[/tex]
=> [tex]P(X < 120) =\frac{1}{26} [ { 26 * e^{-\frac{x}{26} } } ]|\left \ 0 } \atop {120}} \right.[/tex]
=> [tex]P(X < 120) = [ { e^{-\frac{x}{26} } } ]|\left \ 0 } \atop {120}} \right.[/tex]
=> [tex]P(X < 120) = [ { e^{-\frac{0}{26} } } - e^{-\frac{120}{26} } } ][/tex]
=> [tex]P(X < 120) = 0.990101[/tex]
So
[tex]P(X > 120 ) = 1- 0.990101[/tex]
[tex]P(X > 120 ) = 0.0099[/tex]