Answer:
[tex]1.60221\times 10^{21}\ \text{J}[/tex]
Explanation:
[tex]\rho[/tex] = Density of sattelite = [tex]3400\ \text{kg/m}^3[/tex]
[tex]v[/tex] = Velocity of asteroid = [tex]15\ \text{km/s}[/tex]
Radius of the asteroid = [tex]\dfrac{2}{2}=1\ \text{km}[/tex]
Mass of asteroid
[tex]m=\rho V\\\Rightarrow m=3400\times \dfrac{4}{3}\pi 1000^3[/tex]
Energy of the asteroid would be
[tex]E=\dfrac{1}{2}mv^2\\\Rightarrow E=\dfrac{1}{2}\times 3400\times \dfrac{4}{3}\pi 1000^3\times (15\times10^3)^2\\\Rightarrow E=1.60221\times 10^{21}\ \text{J}[/tex]
The destructive energy that could be released when the asteroid embeds itself in the Earth is [tex]1.60221\times 10^{21}\ \text{J}[/tex]