Respuesta :
Given:
Model tile length = [tex]\dfrac{1}{3}\text{ in.}[/tex]
Model tile width = [tex]\dfrac{1}{4}\text{ in.}[/tex]
Actual tile length = [tex]\dfrac{1}{4}\text{ ft.}[/tex]
Actual tile width = [tex]\dfrac{3}{16}\text{ ft.}[/tex]
To find:
The ratio of the length of a tile in the model to the length of an actual tile and the ratio of the area of a tile the model to the area of an actual tile.
Solution:
We know that,
1 ft = 12 in.
Actual tile length [tex]=\dfrac{1}{4}\times 12\text{ in.}[/tex]
[tex]=3\text{ in.}[/tex]
Actual tile width [tex]=\dfrac{3}{16}\times 12\text{ in.}[/tex]
[tex]=\dfrac{3}{4}\times 3\text{ in.}[/tex]
[tex]=\dfrac{9}{4}\text{ in.}[/tex]
The ratio of the length of a tile in the model to the length of an actual tile is
[tex]\dfrac{\dfrac{1}{3}}{3}=\dfrac{1}{9}=1:9[/tex]
Therefore, the ratio of the length of a tile in the model to the length of an actual tile is [tex]\dfrac{1}{9}[/tex] or it can be written as 1:9.
Area of rectangle = length × width
Area of model tile [tex]=\dfrac{1}{3}\times \dfrac{1}{4}[/tex]
[tex]=\dfrac{1}{12}\text{ in.}^2[/tex]
Area of actual tile [tex]=3\times \dfrac{9}{4}[/tex]
[tex]=\dfrac{27}{4}\text{ in.}^2[/tex]
The ratio of the area of a tile the model to the area of an actual tile is
[tex]\dfrac{\dfrac{1}{12}}{\dfrac{27}{4}}=\dfrac{1}{12}\times \dfrac{4}{27}[/tex]
[tex]\dfrac{\dfrac{1}{12}}{\dfrac{27}{4}}=\dfrac{1}{3}\times \dfrac{1}{27}[/tex]
[tex]\dfrac{\dfrac{1}{12}}{\dfrac{27}{4}}=\dfrac{1}{81}=1:81[/tex]
Therefore, ratio of the area of a tile the model to the area of an actual tile is [tex]\dfrac{1}{81}[/tex] or it can be written as 1:81.