Answer:
The answer is "1.6 and [tex]\frac{11}{12}[/tex]".
Step-by-step explanation:
The joint pdf by x and y
[tex]1< x<2\\ 0< x< 1[/tex]
In point a:
[tex]\to K \int^1_{y=0} \int^2_{x=1} (2y - \frac{x}{4}) dx, dy =1\\\\ \to k \int^{1}_{y=0} 2y - \frac{x^2}{8} \int^{2}_{1} dy=1\\\\\to k \ \ y^2 \int^1_{0} - \frac{1}{8} (3) =1 \\\\ \to k \ (1-\frac{3}{8}) =1\\\\\to k= \frac{8}{5}\\\\[/tex]
[tex]= 1.6[/tex]
In point b:
In the original pdf of x
[tex]\to fx(x)= k \int^{1}_{y=0} (2y-\frac{x}{4}) dy =k[/tex]
[tex]= k \int^{2}_{1} (x-\frac{x^2}{4}) dx =k\\\\= k \frac{x^2}{2} - \frac{x^3}{12})^2_{1} =k\\\\= k \frac{1}{2} \times 3 - \frac{1}{12} \times 7 =k \\\\ =\frac{3}{2} - \frac{7}{12}\\\\= \frac{11}{12}[/tex]