Answer:
Maximum absolute value of f=61/2 at ([tex]3/2\sqrt{7},-1/2[/tex]) and ([tex]-3/2\sqrt{7},-1/2[/tex])
Minimum absolute value of f=-10 at (0,-5)
Step-by-step explanation:
We are given that
[tex]f(x,y)=2x^2+2y[/tex]
Let
[tex]g(x,y)=x^2+2y+y^2-15=0[/tex]
[tex]\nabla f(x,y)=<4x,2>[/tex]
[tex]\nabla g(x,y)=<2x,2+2y>[/tex]
Using Lagrange multipliers
[tex]f_x(x,y)=\lambda g_x(x,y)[/tex]
[tex]4x=2x\lambda[/tex]
[tex]4x-2x\lambda=2x(2-\lambda)=0[/tex]
x=0 or
[tex]\lambda=2[/tex]
If x=0
Then,
[tex]y^2+2y-15=0[/tex]
[tex]y^2+5y-3y-15=0[/tex]
[tex]y(y+5)-3(y+5)=0[/tex]
[tex](y+5)(y-3)=0[/tex]
[tex]y=-5,3[/tex]
[tex]2=(2+2y)\lambda[/tex]
If [tex]\lambda=2[/tex]
[tex]2=2(2+2y)[/tex]
[tex]2/2=2+2y[/tex]
[tex]1=2+2y[/tex]
[tex]2y=1-2=-1[/tex]
[tex]y=-\frac{1}{2}[/tex]
If y=-1/2
Then,
[tex]x^2-1+1/4=15[/tex]
[tex]x^2+(\frac{-4+1}{4})=15[/tex]
[tex]x^2-\frac{3}{4}=15[/tex]
[tex]x^2=15+3/4=\frac{60+3}{4}=\frac{63}{4}[/tex]
[tex]x=\pm\frac{3\sqrt{7}}{2}[/tex]
Therefore, possible extreme points are
(0,-5),(0,3),([tex]3/2\sqrt{7},-1/2[/tex]) and ([tex]-3/2\sqrt{7},-1/2[/tex])
[tex]f(0,-5)=2(0)+2(-5)=-10[/tex]
[tex]f(0,3)=2(3)=6[/tex]
[tex]f(3/2\sqrt{7},-1/2)=\frac{63}{2}-1=\frac{61}{2}[/tex]
[tex]f(-3/2\sqrt{7},-1/2)=\frac{63}{2}-1=\frac{61}{2}[/tex]
Therefore, maximum absolute value of f=61/2 at ([tex]3/2\sqrt{7},-1/2[/tex]) and ([tex]-3/2\sqrt{7},-1/2[/tex])
Minimum absolute value of f=-10 at (0,-5)