Respuesta :

Answer:

Maximum absolute value of f=61/2 at ([tex]3/2\sqrt{7},-1/2[/tex]) and ([tex]-3/2\sqrt{7},-1/2[/tex])

Minimum absolute value of f=-10 at (0,-5)

Step-by-step explanation:

We are given that

[tex]f(x,y)=2x^2+2y[/tex]

Let

[tex]g(x,y)=x^2+2y+y^2-15=0[/tex]

[tex]\nabla f(x,y)=<4x,2>[/tex]

[tex]\nabla g(x,y)=<2x,2+2y>[/tex]

Using Lagrange multipliers

[tex]f_x(x,y)=\lambda g_x(x,y)[/tex]

[tex]4x=2x\lambda[/tex]

[tex]4x-2x\lambda=2x(2-\lambda)=0[/tex]

x=0 or

[tex]\lambda=2[/tex]

If x=0

Then,

[tex]y^2+2y-15=0[/tex]

[tex]y^2+5y-3y-15=0[/tex]

[tex]y(y+5)-3(y+5)=0[/tex]

[tex](y+5)(y-3)=0[/tex]

[tex]y=-5,3[/tex]

[tex]2=(2+2y)\lambda[/tex]

If [tex]\lambda=2[/tex]

[tex]2=2(2+2y)[/tex]

[tex]2/2=2+2y[/tex]

[tex]1=2+2y[/tex]

[tex]2y=1-2=-1[/tex]

[tex]y=-\frac{1}{2}[/tex]

If y=-1/2

Then,

[tex]x^2-1+1/4=15[/tex]

[tex]x^2+(\frac{-4+1}{4})=15[/tex]

[tex]x^2-\frac{3}{4}=15[/tex]

[tex]x^2=15+3/4=\frac{60+3}{4}=\frac{63}{4}[/tex]

[tex]x=\pm\frac{3\sqrt{7}}{2}[/tex]

Therefore, possible extreme points are

(0,-5),(0,3),([tex]3/2\sqrt{7},-1/2[/tex]) and ([tex]-3/2\sqrt{7},-1/2[/tex])

[tex]f(0,-5)=2(0)+2(-5)=-10[/tex]

[tex]f(0,3)=2(3)=6[/tex]

[tex]f(3/2\sqrt{7},-1/2)=\frac{63}{2}-1=\frac{61}{2}[/tex]

[tex]f(-3/2\sqrt{7},-1/2)=\frac{63}{2}-1=\frac{61}{2}[/tex]

Therefore, maximum absolute value of f=61/2 at ([tex]3/2\sqrt{7},-1/2[/tex]) and ([tex]-3/2\sqrt{7},-1/2[/tex])

Minimum absolute value of f=-10 at (0,-5)

ACCESS MORE
EDU ACCESS
Universidad de Mexico