Answer:
The answer is [tex]\frac{dT}{dP} = 2.84*10^{-4}\ K/Pa[/tex]
Explanation:
From the question we are told that
The boiling point of water is [tex]T_b = 100^oC = 100 + 273 = 373 \ K[/tex]
The enthalpy of vaporization is [tex]\Delta H_{vap} = 40.69 \ kJ mol-1 = 40.69 *10^{3} \ J/mol[/tex]
The molar volume of liquid water is [tex]V =0.019 * 10^{-3} m^3 mol^{-1}[/tex]
The molar volume of steam is [tex]V_s = 30.199 * 10^{-3} \cddot m^3\cdot mol^{-1}[/tex]
The pressure is [tex]P = 1.01325 \ bar[/tex]
Gnerally from Clausius Clapeyron equation we have that
[tex]\frac{dP}{dT} = \frac{\Delta H_{vap}}{ T * \Delta V}[/tex]
Here [tex]\Delta V = V_s - V[/tex]
=> [tex]\Delta V = [30.199 * 10^{-3} ] - [ 0.019 * 10^{-3}][/tex]
=> [tex]\Delta V = [30.199 * 10^{-3} ] - [ 0.019 * 10^{-3}][/tex]
=> [tex]\Delta V = 0.03018 \ m^3 mol^{-1}[/tex]
So
[tex]\frac{dP}{dT} = \frac{40.69 *10^{3} }{ 373 * 0.03018}[/tex]
=> [tex]\frac{dP}{dT} = 3522.28 \ Pa/K[/tex]
Generally from the we are ask to obtain the change in the boiling point of water at 1000 C per Pa change under atmospheric pressure conditions which is mathematically represented as
[tex]\frac{d T}{dP}[/tex]
So
[tex]\frac{dT}{dP} = \frac{1}{\frac{dP}{dT} } = \frac{1}{3522.28}[/tex]
=> [tex]\frac{dT}{dP} = \frac{1}{\frac{dP}{dT} } = 2.84*10^{-4}\ K/Pa[/tex]