Answer:
a)4.15 years
b)22.18 years
c)188.53 years
d)3027.66 years
Step-by-step explanation:
Formula : [tex]P(X\leq t)=1-e^{\frac{-t}{\lambda}}[/tex]
So, [tex]P(X>t)=1-(1-e^{\frac{-t}{\lambda}})[/tex]
[tex]P(X>t)=e^{\frac{-t}{\lambda}}[/tex]
We are given that The half-life of such a persistent poison is that time beyond which the probability is .50 that a particular molecule will remain toxic i.e. P(X>t)=0.5
So, [tex]e^{\frac{-t}{\lambda}}=0.5[/tex]
Taking natural log both sides
[tex]ln(e^{\frac{-t}{\lambda}})=ln(0.5)\\\frac{-t}{\lambda}=ln(0.5)\\t=-\lambda ln(0.5)[/tex]
a)
[tex]\lambda =6[/tex]
t=-(6) ln(0.5)=4.15 years
b)
[tex]\lambda =32[/tex]
t=-(32) ln(0.5)=22.18 years
c)
[tex]\lambda =272[/tex]
t=-(272) ln(0.5)=188.53 years
d)
[tex]\lambda =4368[/tex]
t=-(4368) ln(0.5)=3027.66 years