Review the incomplete derivation of the cosine sum identity.

A 2-column table with 5 rows. Column 1 has entries step 1, step 2, step 3, step 4, step 5. Column 2 has entries cosine (x + y), sine (StartFraction pi Over 2 EndFraction minus (x + y) ), blank, sine (StartFraction pi Over 2 EndFraction minus x) cosine (negative y) + cosine (StartFraction pi Over 2 EndFraction minus x) sine (negative y), blank.

Which expressions for Step 3 and Step 5 complete the derivation?

Step 3: Sine ( (StartFraction pi over 2 EndFraction minus x) + y )
Step 5: cos(x)cos(y) + sin(x)sin(y)
Step 3: Sine ( (StartFraction pi over 2 EndFraction minus x) + y )
Step 5: cos(x)cos(y) – sin(x)sin(y)
Step 3: Sine ( (StartFraction pi over 2 EndFraction minus x) minus y )
Step 5: cos(x)cos(y) + sin(x)sin(y)
Step 3: Sine ( (StartFraction pi over 2 EndFraction minus x) minus y )
Step 5: cos(x)cos(y) – sin(x)sin(y)

Review the incomplete derivation of the cosine sum identity A 2column table with 5 rows Column 1 has entries step 1 step 2 step 3 step 4 step 5 Column 2 has ent class=

Respuesta :

Answer:

Option (4)

Step-by-step explanation:

STEP - 1

cos(x + y)

STEP - 2

[tex]\text{sin}[\frac{\pi}{2}-(x+y)][/tex]

STEP - 3

[tex]\text{sin}[(\frac{\pi}{2}-x)-y][/tex]

STEP - 4

[tex]\text{sin}(\frac{\pi}{2}-x)\text{cos}(-y)+\text{cos}(\frac{\pi}{2}-x)\text{sin}(-y)[/tex]

STEP - 5

cos(x)cos(y) - sin(x)sin(y)

[Since, [tex]\text{sin}(\frac{\pi}{2}-x)=cos(x)[/tex] and [tex]\text{cos}(\frac{\pi}{2}-x)=\text{sin}(x)[/tex]]

[Since, cos(-x) = cos(x) and sin(-x) = -sin(x)]

Therefore, Option (4) will be the correct option.

Answer:

D

Step-by-step explanation:

Top Answer was right, don't know why it was rated poorly

Ver imagen TheoFromWiiSports
RELAXING NOICE
Relax