The value of the x is equal to the 5pi/3.
The expression is
[tex]\sin \left(11\cdot \frac{\pi }{2}+x\right)=-\frac{1}{2},\:\pi \le \:x\le \:2\pi[/tex]
The value of the given expression.
What is the expression?
An expression or mathematical expression is a finite combination of symbols that is well-formed according to rules that depend on the context.
We have,
[tex]\sin \left(11\cdot \frac{\pi }{2}+x\right)=-\frac{1}{2},\:\pi \le \:x\le \:2\pi[/tex]
[tex]11\cdot \frac{\pi }{2}+x=\frac{7\pi }{6}+2\pi n,\:11\cdot \frac{\pi }{2}+x=\frac{11\pi }{6}+2\pi n[/tex]
[tex]x=2\pi n-\frac{13\pi }{3},\:x=2\pi n-\frac{11\pi }{3}[/tex]
[tex]x=\frac{5\pi }{3}[/tex]
Therefore, The value of the x is equal to the 5pi/3.
To learn more about the sin function visit:
https://brainly.com/question/16818112
#SPJ2