Respuesta :
[tex]\sqrt{x+10}-4=x\\ \sqrt{x+10}=x+4\\x+10=(x+4)^2=x^2+8x+16\\x^2+7x+6=0\\x^2+x+6x+6=0\\x(x+1)+6(x+1)=0\\(x+6)(x+1)=0\\x=-6 \ and \ x=-1[/tex]
x = -6 is an extraneous solution, Therefore, solution is x = -1.
x = -6 is an extraneous solution, Therefore, solution is x = -1.
Answer:
The solution of given equation are x = −6 x = −1.
Step-by-step explanation:
The given equation is
[tex]\sqrt{x+10}-4=x[/tex]
Add 4 on both sides.
[tex]\sqrt{x+10}=x+4[/tex]
Square both side.
[tex]x+10=(x+4)^2[/tex]
[tex]x+10=x^2+8x+16[/tex]
[tex]0=x^2+7x+6[/tex]
[tex]0=x^2+6x+x+6[/tex]
[tex]0=x(x+6)+1(x+6)[/tex]
[tex]0=(x+6)(x+1)[/tex]
Use zero product property and equate each factor equal to 0.
[tex]x+6=0\Rightarrow x=-6[/tex]
[tex]x+1=0\Rightarrow x=-1[/tex]
Therefore the solution of given equation are x = −6 x = −1.
