Respuesta :

[tex]\sqrt{x+10}-4=x\\ \sqrt{x+10}=x+4\\x+10=(x+4)^2=x^2+8x+16\\x^2+7x+6=0\\x^2+x+6x+6=0\\x(x+1)+6(x+1)=0\\(x+6)(x+1)=0\\x=-6 \ and \ x=-1[/tex]

x = -6 is an extraneous solution, Therefore, solution is x = -1.

Answer:

The solution of given equation are x = −6 x = −1.

Step-by-step explanation:

The given equation is

[tex]\sqrt{x+10}-4=x[/tex]

Add 4 on both sides.

[tex]\sqrt{x+10}=x+4[/tex]

Square both side.

[tex]x+10=(x+4)^2[/tex]

[tex]x+10=x^2+8x+16[/tex]

[tex]0=x^2+7x+6[/tex]

[tex]0=x^2+6x+x+6[/tex]

[tex]0=x(x+6)+1(x+6)[/tex]

[tex]0=(x+6)(x+1)[/tex]

Use zero product property and equate each factor equal to 0.

[tex]x+6=0\Rightarrow x=-6[/tex]

[tex]x+1=0\Rightarrow x=-1[/tex]

Therefore the solution of given equation are x = −6 x = −1.

RELAXING NOICE
Relax