What is the equation of the quadratic graph with a focus of (−4, −five fourths) and a directrix of y = twenty seven fourths?

Respuesta :

f(x) =negative one sixteenthsx2 − one half x +seven-fourths  

Answer:

To find the quadratic equation:

Assume any point (x, y) on parabola.

Use the distance formula i.e, [tex]\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]

Distance between (x , y) and focus [tex](-4 , \frac{-5}{4})[/tex] is:

[tex]\sqrt{(x+4)^2 +(y+\frac{5}{4})^2 }[/tex]

Now, the distance between (x, y) and directrix of y = [tex]\frac{27}{4}[/tex] is:

[tex]\sqrt{(y-\frac{27}{4})^2 }[/tex]

On the parabola these distance are same;

[tex]\sqrt{(x+4)^2 +(y+\frac{5}{4})^2 }[/tex] = [tex]\sqrt{(y-\frac{27}{4})^2 }[/tex]

[tex](x+4)^2 + (y+\frac{5}{4})^2 = (y-\frac{27}{4})^2[/tex]

[tex](x+4)^2 + y^2+\frac{25}{16}+\frac{5}{2}y = y^2+\frac{729}{16}-\frac{27}{2}y[/tex]

or

[tex](x+4)^2 = y^2+\frac{729}{16}-\frac{27}{2}y -y^2-\frac{25}{16}-\frac{5}{2}y[/tex]

Simplify:

[tex](x+4)^2 = \frac{729-25}{16}-\frac{27+5}{2}y[/tex]

[tex](x+4)^2 = \frac{704}{16}-\frac{32}{2}y[/tex]

Simplify:

[tex](x+4)^2 =44-16y[/tex]  

or

[tex]16y = -(x+4)^2+44[/tex]

Divide both sides by 16 we get;

[tex]y = \frac{-1}{16}(x+4)^2 + \frac{44}{16}[/tex]

[tex]y = \frac{-1}{16}(x^2+16+8x) + \frac{11}{4}[/tex]

or

[tex]y= \frac{-1}{16}x^2-1-\frac{1}{2}x+ \frac{11}{4}[/tex]

Simplify:

[tex]y= \frac{-1}{16}x^2-\frac{1}{2}x+ \frac{7}{4}[/tex]

therefore, the equation of the quadratic is; f(x) =negative one sixteenthsx^2 − one half x + seven-fourths.


ACCESS MORE