the spectral lines observed for hydrogen arise from transitions from excited states back to the n=2 principle quantum level. Calculate the wavelengths associated with the spectral transitions of the hydrogen atom from the n=6,5,4 and 3 to the n=2 level.

Respuesta :

Rydberg formula is given by:

[tex]\frac{1}{\lambda } = R_{H}\times (\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}} )[/tex]

where, [tex]R_{H}[/tex] = Rydberg  constant = [tex]1.0973731568508 \times 10^{7} per metre[/tex]

[tex]\lambda[/tex] = wavelength

[tex]n_{1}[/tex] and [tex]n_{2}[/tex] are the level of transitions.

Now, for [tex]n_{1}[/tex]= 2 and [tex]n_{2}[/tex]= 6

[tex]\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{6^{2}} )[/tex]

= [tex]1.0973731568508 \times 10^{7} \times (\frac{1}{4}-\frac{1}{36} )[/tex]

= [tex]1.0973731568508 \times 10^{7} \times (0.25-0.0278 )[/tex]

= [tex]1.0973731568508 \times 10^{7} \times 0.23[/tex]

= [tex]0.2523958\times 10^{7} [/tex]

[tex]\lambda = \frac{1}{0.2523958\times 10^{7}}[/tex]

= [tex]3.9620\times 10^{-7} m [/tex]

= [tex]396.20\times 10^{-9} m [/tex]

= [tex]396.20 nm [/tex]

Now, for [tex]n_{1}[/tex]= 2 and [tex]n_{2}[/tex]= 5

[tex]\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{5^{2}} )[/tex]

= [tex]1.0973731568508 \times 10^{7} \times (0.25-0.04 )[/tex]

= [tex]1.0973731568508 \times 10^{7} \times (0.21 )[/tex]

= [tex]0.230 \times  10^{7}[/tex]

[tex]\lambda= \frac{1}{0.230 \times 10^{7}}[/tex]

= [tex] 4.3478 \times 10^{-7} m [/tex]

= [tex]434.78\times 10^{-9} m [/tex]

= [tex]434.78 nm [/tex]

Now, for [tex]n_{1}[/tex]= 2 and [tex]n_{2}[/tex]= 4

[tex]\frac{1}{\lambda} = 1.0973731568508 \times  10^{7} \times (\frac{1}{2^{2}}-\frac{1}{4^{2}} )[/tex]

=  [tex]1.0973731568508 \times 10^{7} \times (0.25-0.0625 )[/tex]

= [tex]1.0973731568508 \times 10^{7} \times (0.1875 )[/tex]

= [tex]0.20575 \times 10^{7}[/tex]

[tex]\lambda= \frac{1}{0.20575 \times 10^{7}}[/tex]

= [tex]4.8602 \times 10^{-7} m [/tex]

= [tex]486.02 \times 10^{-9} m [/tex]

= [tex]486.02 nm [/tex]

Now, for [tex]n_{1}[/tex]= 2 and [tex]n_{2}[/tex]= 3

[tex]\frac{1}{\lambda} = 1.0973731568508 \times 10^{7} \times (\frac{1}{2^{2}}-\frac{1}{3^{2}} )[/tex]

=  [tex]1.0973731568508 \times 10^{7} \times (0.25-0.12 )[/tex]

=  [tex]1.0973731568508 \times 10^{7} \times (0.13 )[/tex]

= [tex]0.1426585\times 10^{7}[/tex]

[tex]\lambda= \frac{1}{0.1426585\times 10^{7}}[/tex]

= [tex]7.0097 \times 10^{-7} m [/tex]

= [tex]700.97 \times 10^{-9} m [/tex]

= [tex]700.97 nm [/tex]



The wavelengths of spectral line observed in hydrogen atom are,

The value of wavelength of first spectral line from n=6 to n=2 is [tex]\boxed{{\text{410}}{\text{.2 nm}}}[/tex].

The value of wavelength of second spectral line from n=5 to n=2 is [tex]\boxed{{\text{434}}{\text{.1 nm}}}[/tex] .

The value of wavelength of third spectral line from n=4 to n=2 is [tex]\boxed{{\text{486}}{\text{.2 nm}}}[/tex] .

The value of wavelength of fourth spectral line from n=3 to n=2 is [tex]\boxed{{\text{656}}{\text{.3 nm}}}[/tex] .

Further explanation:

Concept:

According to the Rydberg equation, the wavelength of spectral line related with the transition values as follows:

[tex]\frac{1}{\lambda }=\left( {{{\text{R}}_{\text{H}}}}\right)\left({\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)[/tex]                       …… (1)

Here, [tex]\lambda[/tex] is the wavelength of spectral line, [tex]{{\text{R}}_{\text{H}}}[/tex]  is the Rydberg constant that has the value [tex]1.097\times{10^7}{\text{ }}{{\text{m}}^{-1}}[/tex] , [tex]{{\text{n}}_{\text{i}}}[/tex]  is the initial energy level of transition, and [tex]{{\text{n}}_{\text{f}}}[/tex]  is the final energy level of transition.

Therefore, after rearrangement of equation (1) [tex]\lambda[/tex] can be calculated as,

[tex]\lambda=\frac{1}{{\left({1.097\times {{10}^7}{\text{ }}{{\text{m}}^{-1}}}\right)\left( {\frac{1}{{{{\left({{{\text{n}}_{\text{f}}}}\right)}^2}}}-\frac{1}{{{{\left({{{\text{n}}_{\text{i}}}}\right)}^2}}}}\right)}}[/tex]                       …… (2)

Solution:

Finding the wavelength of spectral lines in each transition.

1. For the first transition, from initial energy level n=6 to final energy level n=2.

[tex]\begin{aligned}{\lambda _1}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{6}}\right)}^2}}}}\right)}}\\&= 4.102\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{410}}{\mathbf{.2 nm}}\\\end{aligned}[/tex]

2. For the second transition, from initial energy level n=5 to final energy level n=2.

[tex]\begin{aligned}{\lambda _2}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{5}}\right)}^2}}}}\right)}}\\&= 4.341\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{434}}{\mathbf{.1 nm}}\\\end{aligned}[/tex]

3. For the third transition, from initial energy level n=4 to final energy level n=2.

[tex]\begin{aligned}{\lambda _3}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{4}}\right)}^2}}}}\right)}}\\&= 4.862\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{486}}{\mathbf{.2 nm}}\\\end{aligned}[/tex]

4. For the fourth transition, from initial energy level n=3 to final energy level n=2.

[tex]\begin{aligned}{\lambda _4}&=\frac{1}{{\left( {1.097\times {{10}^7}{\text{ }}{{\text{m}}^{ - 1}}}\right)\left({\frac{1}{{{{\left( {\text{2}}\right)}^2}}}-\frac{1}{{{{\left({\text{3}}\right)}^2}}}}\right)}}\\&= 6.563\times {10^{ - 7}}{\text{ m}}\times\left({\frac{{1{\text{ nm}}}}{{{{10}^{ - 9}}{\text{ m}}}}}\right)\\&={\mathbf{656}}{\mathbf{.3 nm}}\\\end{aligned}[/tex]

Learn more:

1. Ranking of elements according to their first ionization energy.: https://brainly.com/question/1550767

2. Chemical equation representing the first ionization energy for lithium.: https://brainly.com/question/5880605

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Atomic structure

Keywords: transition, hydrogen atom, energy difference, transition from n=6 to n=2, transition from n=5 to n=2, transition from n=4 to n=2, transition from n=3 to n=2, spectral lines, wavelength of spectral lines.

ACCESS MORE