Respuesta :
Answer;
A. [tex]x = 2 +/- sqrt(17) / 2[/tex]
Explanation;
- Using the equation given we can calculate the value of t, time taken by the basket ball to hit the ground.
[tex]h = -16t^2 + 64t + 4 \\0 = -16t^2 + 64t + 4 \\16t^2 - 64t - 4 = 0 \\4(4t^2 - 16t - 1) = 0 \\4t^2 - 16t - 1 = 0 \\t = (-b +/- sqrt(b^2 - 4ac)) / 2a \\t = (16 +/- sqrt(256 + 16)) / 8 \\t = (16 +/- sqrt(272)) / 8 \\t = (16 +/- 4 sqrt(17)) / 8 \\t= 2 +/- sqrt(17) / 2[/tex]
Answer:
[tex]t = 2 \pm \frac{\sqrt{17}}{2}[/tex]
Explanation:
As we know that the position of the ball is related with time given as
[tex]h = -16 t^2 + 64 t + 4[/tex]
now when ball hit the ground then we have
h = 0
so we will have
[tex]-16 t^2 + 64 t + 4 = 0[/tex]
[tex]-4 t^2 + 16 t + 1 = 0[/tex]
so here by solving the above equation we have
[tex]t = \frac{-16 \pm \sqrt{256 + 16}}{-8}[/tex]
[tex]t = 2 \pm \frac{\sqrt{17}}{2}[/tex]
