Respuesta :

Answer:

Correct Choice: Second Option

[tex]\displaystyle x=\frac{5\pm \sqrt{97}}{12}[/tex]

Step-by-step explanation:

Standard Form of Quadratic Function

The standard representation of a quadratic function is:

[tex]f(x)=ax^2+bx+c[/tex]

where a,b, and c are constants.

Solving with the quadratic formula:

[tex]\displaystyle x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

We have the following equation to solve:

[tex]5x = 6x^2 -3[/tex]

Rearranging all the terms to the left side:

[tex]6x^2 -5x- 3=0[/tex]

Comparing with the general form of the quadratic equation: a=6, b=-5, c=-3. Apply the formula:

[tex]\displaystyle x=\frac{-(-5)\pm \sqrt{(-5)^2-4(6)(-3)}}{2(6)}[/tex]

[tex]\displaystyle x=\frac{5\pm \sqrt{25+72}}{12}[/tex]

[tex]\boxed{\displaystyle x=\frac{5\pm \sqrt{97}}{12}}[/tex]

Correct Choice: Second Option

ACCESS MORE