Answer:
Volume of box is [tex]432 in^3[/tex]
Step-by-step explanation:
Let x be the side of square corner
Length of box after cutting corners =22-2x
Breadth of box after cutting corners =15-2x
Height =x
Volume of box = (22-2x)(15-2x)x
Volume of box =[tex]4x^3-74x^2+330x[/tex]
Differentiate w.r.t x
[tex]\frac{dV}{dx}=12x^2-148x+330[/tex]
Substitute derivative =0
[tex]12x^2-148x+330=0\\x=\frac{37-\sqrt{379}}{6},\frac{37+\sqrt{379}}{6}\\\frac{d^2V}{dx^2}=24x-148[/tex]
at [tex]x=\frac{37-\sqrt{379}}{6}[/tex]
[tex]\frac{d^2V}{dx^2}=24x-148=24(\frac{37-\sqrt{379}}{6} )-148=-77.87 < 0[/tex] hence maximum
at [tex]x=\frac{37+\sqrt{379}}{6}[/tex]
[tex]\frac{d^2V}{dx^2}=24x-148=24(\frac{37+\sqrt{379}}{6} )-148=77.87>0[/tex] hence minimum
So,Volume of box =[tex]4x^3-74x^2+330x=4(\frac{37-\sqrt{379}}{6} )^3-74(\frac{37-\sqrt{379}}{6} )^2+330(\frac{37-\sqrt{379}}{6} )=432.23 in^3[/tex]
Hence Volume of box is [tex]432 in^3[/tex]