write the equation of the line perpendicular to y= 5/2x+3 that passes through the point (-7,9). Type an answer using slope-intercept form or using the given points in point-slope form

Respuesta :

Answer:

 5y = -2x + 31

Step-by-step explanation:

Given equation:

      y = [tex]\frac{5}{2} x + 3[/tex]

Coordinate  = (-7,9)

Unknown:

Equation of the line perpendicular  = ?

Solution:

The slope - intercept format of a line is given as;

      y = mx + c

where y and x are the coordinates

           m is the slope

           c is the y-intercept

y = [tex]\frac{5}{2} x + 3[/tex]

 From the given equation; slope is [tex]\frac{5}{2}[/tex]

       

A line perpendicular will have a slope that is negative and the inverse of this;

      slope of perpendicular line  = [tex]-\frac{2}{5}[/tex]

Since y= 9 and x = -7;

  So;

            9 = [tex]\frac{-2}{5} x (-7)[/tex] + C

            9 = [tex]\frac{14}{5}[/tex] + C

           C  = 9 - [tex]\frac{14}{5}[/tex]   = [tex]\frac{31}{5}[/tex]

Now,

       y  =  [tex]-\frac{2}{5}[/tex]x +  [tex]\frac{31}{5}[/tex]

mulitply through by 5;

     5y = -2x + 31

ACCESS MORE