Answer:
[tex]f(0)=-2\\f(1)=e-1[/tex]
Step-by-step explanation:
According to intermediate value theorem, if a function is continuous on an interval [tex][a,b][/tex], and if [tex]k[/tex] is any number between [tex]f(a)[/tex] and [tex]f(b)[/tex], then there exists a value, [tex]x=m[/tex], where [tex]a<m<b[/tex], such that [tex]f(m)=k[/tex]
In the given question,
Intermediate Value Theorem is used to show that there is a root of the given equation in the specified interval.
Here,
[tex]f(x)=e^x-3+2x[/tex]
Put [tex]x=0[/tex]
[tex]f(0)=e^0-3+2(0)=1-3+0=-2[/tex]
Put [tex]x=1[/tex]
[tex]f(1)=e^1-3+2(1)=e-3+2=e-1[/tex]