Respuesta :
Answer:
(0, 3)
Step-by-step explanation:
If a point O(x, y) divides a line XY in the ratio n:m with [tex]X\ at\ (x_1,y_1)\ Y\ at\ (x_2,y_2)[/tex], the coordinates of O is:
[tex]x=\frac{n}{n+m} (x_2-x_1)+x_1\\\\y=\frac{n}{n+m} (y_2-y_1)+y_1[/tex]
AC is 6 times AB, this means that point B, divides line AC in the ratio 1:5. Given A at (1,5) and C at (-5, -7)
Let us assume B to be at (x, y), hence:
[tex]x=\frac{1}{1+5}(-5-1)+ 1=\frac{1}{6}(-6)+1 =0\\\\y=\frac{1}{1+5}(-7-5)+5=\frac{1}{6} (-12)+5=3[/tex]
Therefore the location of B is (0, 3)