Answer:
[tex]\boxed {x = -\frac{1}{7}}[/tex]
Step-by-step explanation:
Solve for the value of [tex]x[/tex]:
[tex]6(4x + 5) = 3(x + 8) + 3[/tex]
-Use Distributive Property:
[tex]6(4x + 5) = 3(x + 8) + 3[/tex]
[tex]24x + 30 = 3x + 24 + 3[/tex]
-Combine like terms:
[tex]24x + 30 = 3x + 24 + 3[/tex]
[tex]24x + 30 = 3x + 27[/tex]
-Take [tex]3x[/tex] and subtract it from [tex]24x[/tex]:
[tex]24x + 30 -3x = 3x - 3x + 27[/tex]
[tex]21x + 30 = 27[/tex]
-Subtract both sides by [tex]30[/tex]:
[tex]21x + 30 - 30 = 27 - 30[/tex]
[tex]21x = -3[/tex]
-Divide both sides by [tex]21[/tex]:
[tex]\frac{21x}{21} = \frac{-3}{21}[/tex]
[tex]x = \frac{-3}{21}[/tex]
-Reduce the fraction to the lowest term by extracting and canceling out [tex]3[/tex]:
[tex]x = \frac{-3\div3}{21 \div 3}[/tex]
[tex]\boxed {x = -\frac{1}{7}}[/tex]
Therefore, the value of [tex]x[/tex] is [tex]-\frac{1}{7}[/tex].