Drag the values to the correct location in the equation. Not all values will be used. Which two values will make the equation true, for y≠0

Answer:
17 and 4
Step-by-step explanation:
edmentum 2022
The two values which will make the given true are 17 and 4.
By employing different processes, simplification refers to reducing the expression to a simpler form. The mathematical equation is simplified to its closest value using approximation, which is not perfectly accurate.
Consider the given equation and substitute the vale 17 and 4 in the blank space.
= [tex]17y\sqrt[3]{6y} -14\sqrt[3]{48y^{4} }[/tex]
= [tex]17y\sqrt[3]{6y} -14\sqrt[3]{6*8y^{3} y}[/tex]
= [tex]17y\sqrt[3]{6y} -14\sqrt[3]{6*2^{3} y^{3} y}[/tex]
Further simplifying,
= [tex]17y\sqrt[3]{6y} -14*2y\sqrt[3]{6y}[/tex]
= [tex]17y\sqrt[3]{6y} -28y\sqrt[3]{6y}[/tex]
= [tex]-11y\sqrt[3]{6y}[/tex]
Therefore, the values for which the [tex]17y\sqrt[3]{6y} -14\sqrt[3]{48y^{4} }[/tex] = [tex]-11y\sqrt[3]{6y}[/tex] is 17 and 4.
To know more about solution of quadratic equation, here
https://brainly.com/question/1214333
#SPJ2