Answer:
Option (D)
Step-by-step explanation:
If a point (h, k) divides the line segment having ends at [tex](x_1, y_1)[/tex] and [tex](x_2,y_2)[/tex] in the ratio of m : n then,
h = [tex]\frac{mx_2+nx_1}{m+n}[/tex]
k = [tex]\frac{my_2+ny_1}{m+n}[/tex]
If a point Q(h, k) divides the segment with ends A(-4, 6) and B(6, 1) in the ratio of 3 : 2 then,
h = [tex]\frac{3(6)+2(-4)}{3+2}[/tex]
= [tex]\frac{18-8}{5}[/tex]
h = 2
k = [tex]\frac{3(1)+2(6)}{3+2}[/tex]
= [tex]\frac{3+12}{5}[/tex]
k = 3
Therefore, Coordinates of the point Q are (2, 3).
Option (D) will be the answer.