A storeowner mixed 8 pounds of peanuts and 5 pounds of M&M's. This 13 pound mixture sold for $55.27. A second mixture included 6 pounds of peanuts and 4 pounds of M&M's. This 10 pound mixture sold for $42.70. Find the cost per pound of the peanuts and M&M's.

Respuesta :

Suppose a pound of peanuts is priced at X, M&M is Y, and the equation is 6X+4Y=42.70 8X+5Y=55.27.   [8X+5Y=55.27]*4-[6X+4Y=42.70]*5   is  [32X+20Y=221.08] - [30X+20Y=213.5]  X=3.79 Y=4.99

The cost per pound of the peanuts is $[tex]1.08[/tex] and M&M's is $[tex]9.326[/tex].

Let the cost per pound of the peanuts be $ [tex]x[/tex].

And, the cost per pound of the M&M's be $ [tex]y[/tex].

[tex]8x+5y=55.27...(i)[/tex]

[tex]5x+4y=42.70...(ii)[/tex]

Multiply [tex](i)[/tex] by [tex]4[/tex] and [tex](ii)[/tex] by [tex]5[/tex],

[tex]32x+20y=221.08...(iii)[/tex]

[tex]25x+20y=213.5...(iv)[/tex]

Subtract [tex](ii)[/tex] from [tex](i)[/tex],

[tex]32x-25x+20y-20y=221.08-213.5[/tex]

[tex]7x=7.58[/tex]

[tex]x=1.08[/tex]

Substitute this value in [tex](i)[/tex],

[tex]8x+5y=55.27[/tex]

[tex]8(1.08)+5y=55.27[/tex]

[tex]8.64+5y=55.27[/tex]

[tex]5y=55.27-8.64[/tex]

[tex]5y=46.63[/tex]

[tex]y=9.326[/tex]

So, the cost per pound of the peanuts is $[tex]1.08[/tex] and M&M's is $[tex]9.326[/tex].

Learn more about substitution method here:

https://brainly.com/question/22340165?referrer=searchResults

RELAXING NOICE
Relax