Answer:
F= (900,000)
F1= 300,000
F2 = 650,000
F3 = 350,000
F4 = 170,000
F5 = 62,000
NPV at 10% $327487
IRR 20.587%
Explanation:
F0 -900,000
revenues variable cost fixed cost net flow
F1 800,000 -400000 -100,000 = 300,000
F2 1,500,000 -750000 -100,000 = 650,000
F3 900000 -450000 -100,000 = 350,000
F4 540000 -270000 -100,000 = 170,000
F5 324000 -162000 -100,000 = 62,000
NPV at 10%:
For each cashflow, we apply the discount of a lump sum formula
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
And add them together for the net present value
[tex]\left[\begin{array}{ccc}Year&$cashflow&PV\\0&-900,000&-900,000\\1&300,000&272,727\\2&650,000&537,190\\3&350,000&262,960\\4&170,000&116,112\\5&62,000&38,497\\Total&&327487\\\end{array}\right][/tex]
We solve for the IRR using the excel IRR formula
we list the cashflow and use IRR to select them.