Respuesta :

Answer:

[tex]3(x - 1)^2 - 11= 0[/tex]

Step-by-step explanation:

Given

[tex]3x^2 - 6x = 8[/tex]

Required

Rewrite in form of [tex]3(x - p)^2 + q = 0[/tex]

[tex]3x^2 - 6x = 8[/tex]

Subtract 8 from both sides

[tex]3x^2 - 6x - 8 = 8 - 8[/tex]

[tex]3x^2 - 6x - 8 = 0[/tex]

Express -8 as 3 - 11;

So, we have:

[tex]3x^2 - 6x + 3 - 11= 0[/tex]

Expand [tex]3x^2 - 6x + 3[/tex]

[tex]3(x^2 - 2x + 1) - 11= 0[/tex]

Factorize the expression in the bracket;

[tex]3(x^2 - x -x + 1) - 11= 0[/tex]

[tex]3(x(x - 1) -1(x - 1)) - 11= 0[/tex]

[tex]3((x - 1)^2) - 11= 0[/tex]

[tex]3(x - 1)^2 - 11= 0[/tex]

By comparison: [tex]3(x - p)^2 + q = 0[/tex]

[tex]p= 1[/tex]

[tex]q = -11[/tex]

ACCESS MORE