Answer:
Step-by-step explanation:
Recall that: The number of combination to select any k consecutive element from n consecutive term is given by the equation [tex]^{n-k+1}C_k[/tex]
[tex]= \begin {pmatrix} ^{n-k+1}_{k} \end {pmatrix}[/tex]
where:
n = 26
k = 5
[tex]^{n-k+1}C_k= \begin {pmatrix} ^{26-5+1}_{5} \end {pmatrix}[/tex]
[tex]^{n-k+1}C_k= \begin {pmatrix} ^{22}_{5} \end {pmatrix}[/tex]
[tex]^{n-k+1}C_k= \dfrac{22!}{5!(22-5)!}[/tex]
[tex]^{n-k+1}C_k= \dfrac{22!}{5!(17)!}[/tex]
[tex]\mathbf{^{n-k+1}C_k=26334}[/tex]
Therefore, there are 26334 selection of 5 episodes with no two consecutive episodes chosen