Respuesta :
Answer:
10
Step-by-step explanation:
[tex]d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\\\\(6,2)=(x_1,y_1)\\(0,-6)=(x_2,y_2)\\\\d=\sqrt{\left(0-6\right)^2+\left(-6-2\right)^2}\\\\d=\sqrt{6^2+8^2}\\\\d=\sqrt{36+64}\\\\d=\sqrt{100}\\\\d=\sqrt{10^2}\\\\d =10[/tex]
Step-by-step explanation:
Hey there!
Given points are; (6,2) and (0,-6)
Use distance between two points.
[tex]d = \sqrt{ {x2 - x1)}^{2} + {(y2 - y1)}^{2} } [/tex]
Put all values.
[tex]d = \sqrt{( {0 - 6)}^{2} + ( { - 6 - 2)}^{2} } [/tex]
Simplify it to get answer.
[tex]d = \sqrt{ {( - 6)}^{2} + {( - 8)}^{2} } [/tex]
[tex]d = \sqrt{36 + 64} [/tex]
[tex]d = \sqrt{100} [/tex]
[tex]d = 10[/tex]
Therefore the distance between two points is 10 units.
Hope it helps...