Answer:
The total profit over this period is -546
Step-by-step explanation:
Given
Sequence: 4, 1, −2, −5, …, −56
Required
Determine the total profit
To do this, we simply calculate the sum of terms (Sn)
[tex]S_n = \frac{n}{2}(a + T_n)[/tex]
But first, we need to determine the value of n using
[tex]T_n = a + (n - 1)d[/tex]
Where:
[tex]T_n = -56[/tex]
[tex]a = 4[/tex]
[tex]d = 1 -4= -3[/tex]
Substitute these values in the above formula, we have:
[tex]-56 = 4 + (n - 1) * -3[/tex]
[tex]-56 = 4 -3n +3[/tex]
Collect Like Terms
[tex]3n = 56 + 4 + 3[/tex]
[tex]3n = 63[/tex]
[tex]n = 63/3[/tex]
[tex]n = 21[/tex]
Recall that:
[tex]S_n = \frac{n}{2}(a + T_n)[/tex]
This gives:
[tex]S_n = \frac{21}{2}(4 - 56)[/tex]
[tex]S_n = \frac{21}{2}(-52)[/tex]
[tex]S_n = 21 * -26[/tex]
[tex]S_n = -546[/tex]
The total profit over this period is -546