Answer:
The domain of [tex](f\cdot g)(x)[/tex] is [tex]R-\{-2,2\}[/tex].
Step-by-step explanation:
Given that,
[tex]f(x)=\frac{2}{x^2-4}[/tex] and
[tex]g(x)=x^2+4x+4.[/tex]
The function f(x) is not defined when the denominator equals zero, i.e
[tex]x^2-4=0[/tex]
[tex]\Rightarrow x=\pm2[/tex]
So, the domain of f(x) is all real number except [tex]\pm2[/tex].
[tex]f(x)=\frac{2}{x^2-4}[/tex]
for [tex]x\in R-\{-2,2\}\;\cdots(i)[/tex]
The function g(x) is defined for all real numbers.
[tex]g(x)=x^2+4x+4[/tex]
for [tex]x\in R\;\cdots(ii)[/tex]
As [tex](f\cdot g)(x)=f(x)\cdot g(x)[/tex]
[tex]\Rightarrow(f\cdot g)(x)=\left(\frac{2}{x^2-4}\right)\cdot \left(x^2+4x+4\right)[/tex]
[tex]\Rightarrow \frac{2(x^2+4x+4)}{x^2-4}[/tex]
this resulting function have the common domain of f(x) and g(x).
So, from equation (i) and (ii), the domain of [tex](f\cdot g)(x)[/tex] is all real numbers except [tex]\pm2[/tex]. i.e
[tex](f\cdot g)(x)=\frac{2(x^2+4x+4)}{x^2-4}[/tex] for [tex]x\in R-\{-2,2\}[/tex]