Find (f∙g)(x) (hint: After you multiply them, factor both the numerator and denominator. Is there anything that cancels out?): f(x)=2/(x^2-4) g(x)= x^2+4x+4 2. What is the domain and range of (f * g)(x) from number 1? (Hint: Find the domain of f(x) and g(x) first, then look at (f*g)(x) and put them all together.

Respuesta :

Answer:

The domain of [tex](f\cdot g)(x)[/tex] is [tex]R-\{-2,2\}[/tex].

Step-by-step explanation:

Given that,

[tex]f(x)=\frac{2}{x^2-4}[/tex] and

[tex]g(x)=x^2+4x+4.[/tex]

The function f(x) is not defined when the denominator equals zero, i.e

[tex]x^2-4=0[/tex]

[tex]\Rightarrow x=\pm2[/tex]

So, the domain of f(x) is all real number except [tex]\pm2[/tex].

[tex]f(x)=\frac{2}{x^2-4}[/tex]

for [tex]x\in R-\{-2,2\}\;\cdots(i)[/tex]

The function g(x) is defined for all real numbers.

[tex]g(x)=x^2+4x+4[/tex]

for [tex]x\in R\;\cdots(ii)[/tex]

As [tex](f\cdot g)(x)=f(x)\cdot g(x)[/tex]

[tex]\Rightarrow(f\cdot g)(x)=\left(\frac{2}{x^2-4}\right)\cdot \left(x^2+4x+4\right)[/tex]

[tex]\Rightarrow \frac{2(x^2+4x+4)}{x^2-4}[/tex]

this resulting function have the common domain of f(x) and g(x).

So, from equation (i) and (ii), the domain of [tex](f\cdot g)(x)[/tex] is all real numbers except [tex]\pm2[/tex]. i.e

[tex](f\cdot g)(x)=\frac{2(x^2+4x+4)}{x^2-4}[/tex]  for [tex]x\in R-\{-2,2\}[/tex]