Answer:
The answer is below
Explanation:
Given that:
x(t) = at – bt2+c
a) x(t) = at – bt2+c
Substituting a = 1.4 m/s, b = 0.06 m/s2 and c =50 m gives:
x(t) = 1.4t - 0.06t² + 50
At t = 5, x(5) = 1.4(5) - 0.06(5)² + 50 = 55.5 m
At t = 0, x(0) = 1.4(0) - 0.06(0)² + 50 = 50 m
The average velocity (v) is given as:
[tex]v=\frac{x(5)-x(0)}{5-0}\\ \\v=\frac{55.5-50}{5-0}=1.1\\ \\v=1.1\ m/s[/tex]
b) x(t) = 1.4t - 0.06t² + 50
At t = 10, x(10) = 1.4(10) - 0.06(10)² + 50 = 58 m
At t = 0, x(0) = 1.4(0) - 0.06(0)² + 50 = 50 m
The average velocity (v) is given as:
[tex]v=\frac{x(10)-x(0)}{10-0}\\ \\v=\frac{58-50}{10-0}=0.8\\ \\v=0.8\ m/s[/tex]
c) x(t) = 1.4t - 0.06t² + 50
At t = 15, x(5) = 1.4(15) - 0.06(15)² + 50 = 57.5 m
At t = 10, x(10) = 1.4(10) - 0.06(10)² + 50 = 58 m
The average velocity (v) is given as:
[tex]v=\frac{x(15)-x(10)}{15-10}\\ \\v=\frac{57.5-58}{15-10}=0.1\\ \\v=0.1\ m/s[/tex]