Answer:
The base is 19
Explanation:
Given
[tex]25 + 1 + 15 + 229 = 261[/tex]
Required
Determine the base
Represent the base with n;
So, we have
[tex]25_n + 1_n + 15_n + 229_n = 261_n[/tex]
Convert the above to base 10;
[tex]2 * n^1 + 5 * n^0 + 1 * n^0 + 1 * n^1 + 5 * n^0 + 2 * n^2 + 2 * n^1 + 9 * n^0 = 2 * n^2 + 6 * n^1 + 1 * n^0[/tex]
[tex]2 * n + 5 * 1 + 1 * 1 + 1 * n + 5 * 1 + 2 * n^2 + 2 * n + 9 * 1 = 2 * n^2 + 6 * n + 1 * 1[/tex]
[tex]2n + 5 + 1 + n + 5 + 2n^2 + 2n + 9 = 2n^2 + 6n + 1[/tex]
Collect Like Terms
[tex]2n^2 + 2n + 2n +n+ 5 + 1 + 5 + 9 = 2n^2 + 6n + 1[/tex]
[tex]2n^2 +5n + 20 = 2n^2 +6n+1[/tex]
Collect Like Terms
[tex]2n^2 - 2n^2 +5n -6n = 1-20[/tex]
[tex]-n = -19[/tex]
[tex]n = 19[/tex]