The congruent sides of an isosceles triangle are each 1 unit longer than the length of the shortest side of the
triangle. The perimeter of the triangle is the same as the perimeter of a square whose side length is 2 units shorter
than the length of the shortest side of the triangle. What is the length of the shortest side of the triangle

Respuesta :

Answer:

x = 10

Step-by-step explanation:

Call the shortest side = x

Therefore the perimeter is x + (x+1) + (x+ 1) = P

The perimeter of the square is 4*(x - 2)

So these two conditions are equal

x + (x+1) + (x + 1) = 4*(x - 2)                Remove the brackets on both sides.

x + x + 1 + x + 1 = 4x - 8                     Combine the terms on the left

3x + 2 = 4x - 8                                   Add 8 to both sides

3x + 2 + 8 = 4x - 8+ 8                        Combine

3x + 10 = 4x                                       Subtract 3x

3x-3x + 10 = 4x - 3x                           Combine

10 = x

Answer:

10 units

Step-by-step explanation: