contestada

You place a cup of 200oF coffee on a table in a room that is 67oF, and 10 minutes later, it is 195oF. Approximately how long will it be before the coffee is 180oF? Use Newton's law of cooling:

Respuesta :

The answer is 43 minutes APEXX

Answer:

After 50.4 min.

Step-by-step explanation:

Newton's law of cooling-

[tex]T(t)=t_a+(t_0-t_a)e^{-kt}[/tex]

where,

[tex]t_0[/tex] = the initial temp. = 200° F

k = 0.1947,

[tex]T(t)[/tex] = 180° F

[tex]t_a[/tex] = 67° F

Putting the values,

[tex]\Rightarrow 180=67+(200-67)e^{-0.1947\cdot t}[/tex]

[tex]\Rightarrow 180-67=(200-67)e^{-0.1947\cdot t}[/tex]

[tex]\Rightarrow (200-67)e^{-0.1947\cdot t}=180-67[/tex]

[tex]\Rightarrow 133e^{-0.1947\cdot t}=113[/tex]

[tex]\Rightarrow e^{-0.1947\cdot t}=\dfrac{113}{133}[/tex]

[tex]\Rightarrow \ln e^{-0.1947\cdot t}=\ln \dfrac{113}{133}[/tex]

[tex]\Rightarrow -0.1947\cdot t=\ln \dfrac{113}{133}[/tex]

[tex]\Rightarrow t=\dfrac{\ln \dfrac{113}{133}}{-0.1947}=0.84\ h=50.4\ min[/tex]

RELAXING NOICE
Relax